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% 21 Two Approaches for Reducing Aircraft Noise

Advanced Operational Procedures New Configurations

« Flight trajectory adjustments » Continuous descent approaches » Cleaner Airframes
« Scheduling trust cutbacks » Delayed deceleration approaches » Engine Noise Shielding
* RNAV (GPS guided) approaches

Jets not allowed to

turn until past the

Each airline and type of aircraft has a different takeoff protocol at John Wayne  coast.

Airport. Airlines are requirt edtomeet noise limits, buthowthoselmtsae
hdptlh m. Weather dlonssh dpdd

temperature, affect takeoff proc d s. Her typ cal takeoff sc

'I'ypical takeoff procedure for airliners

JWA has a short At about 800 feet, About 1,000 feet
runway at 5,700 engine thrust is cut
feet; LAX runways  back about 10-15
are about 9,000~ percent. There is a
12,000 feet long. slight turn to the left
Since there is less  and the angle of
room to get upto  ascent drops to about
speed, the pilot 15 degrees.

- Conventional ‘

RNAV Approachesat SEA2 D-8 Aircraft Concept3

"] HYPOTHETICAL
FLIGHT PATH Many
raft take off at other

a'ro a10-15 degree takeoff

angle. If th pened at JWA, it's likely

th Hh aircraft be s l th v ould
iolation of court-ordered noi

Sources: FAA pilot safety reports, pilot interviews, Register archives Reporting by DOUG IRVING; Graphic by SCOTT BROWN / The Register

Thrust Cutback on Tokeoff at SNAT

* Project Goal: to expand analysis capabillities to enable the
modeling the noise impacts of advanced operational
procedures for current and future aircraft designs

[1] Irvine, Doug (2012)
[2] FAA (2012)
[3] NASA (2015)



% MIT Limitations of Current Standard Noise Analysis Method:
< lieRT Aircraft Environmental Design Tool (AEDT)

° 1 Noise Power Distance (NPD) Curves
AEDT the currgn’r mdusfrry ;’rondc:rd model GF CF6-50 (Alrbas A300)
to evaluate aircraft noise impacts? -

* Noise-Power-Distance (NPD) based
computations

« AEDT/INM analysis assumes engine noise
dominates aerodynamic noise
— Assumption may have been valid only for
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[4] Boeker, Eric R., et al. (2008)
[5] Airports Commission (2014)
[6] Airbus (2003)
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< car SYystem Noise Analysis: Full Architecture
o Analysis meta-variables
Erlg?:g_gt\jri [ Aircraft Performance Model
Fleet (e.g.ILS, e R - Noise Model
N~ 20 ! Calculate Single- E — Existing aircraft types
! Event Noise ! — New aircraft types
" Translate : - :
4 n procedure () \ ! Single
& 8 into ! ! Procedure
5 & frajectory : i Noise Gridis
5 5 - :
Z o (3) ! |
é’ % e e :
o z|(2 Calculate
é TASOPT BADA DNL
Contours
(1)
Calculate
Legend Noise Metric Population

(1) Geometry and performance characteristics of existing aircraft of Choice

(2) Design variables for new aircraft types l,

(3) Power, drag, and configuration settings for all fleet types

(4) Procedure definition (lateral, vertical, speed, configuration) End

(5) 4-D trajectory, thrust, and configuration

(6) Population density from census




B MIT Aircraft Performance Representation:
e TASOPT vs. BADA 4

Custom Aircraft Design Tool Existing Aircraft Analysis Tool
Transport Aircraft System Base of Aircraft Data (BADA 4)7
OPTimization (TASOPT)’8 -

- Written by Prof. Mark Drela (MIT) * Developed and maintained by
. : . EUROCONTROL
» Physics-based aircraft sizing and ,
optimization program « Database of aircraft performance
. . parameters obtained from aircraft
« Based on mission requirements, manufacturers
generates an optimal transport aircraft L
design, including: * Provides:
— Engine performance and geometry — Thrust values
—  Aircraft performance and geometry — Drag values for various configurations

[7] Drela, M. (2011)
[8] Drela, M. (2011) 5
[9] Eurocontrol (2015)



& e Approach Profile Generator

B737-800, Approach Weight: 146196 Ibs, Engine: CFM56-7B26
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« Generates position (altitude & distance along flight track), velocity, & thrust of an
approach profile, including in flight & landing roll

— Builds profile segment-by-segment, given specified requirements for each segment,
starting from the runway touchdown point

— Ground frack is specified independently



&= er - Computation Methodology

« At each segment, variables are calculated using a force model & kinematics:

The user specifies: The generator computes:

remaining two
5 flap 5gear ’ 6speedbrake,‘/i J

variables are
twoof: z,, S, YVor T } calculated,

using the equations

Si_] VAR belOW:
Vi lift
\ a_EF_T+Wsin(y)—D
m Wig
drag
. thrust AV? Az
weight * cos(y) relative airflow 2a =AQAS= sin(y)
_ 5 Z 1 W cos(y)
weight * sin(y) Vi D= —,OVZSCD((Sﬂap,5gW,CL) CL = 1
2 —pV*’S

.« 5.,2,V. ofonesegment become S,_,Z;,_;,V., of the next segment

l
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Noise Model: ANOPP vs. AEDT

Custom Noise Analysis Tool

Existing Aircraft Noise Analysis Tool

Aircraft NOise Prediction
Program (ANOPP) 10

Effectve Percieved Noise Level (d8) - BOEING 777-300 Arrival

« NASA-developed program

« Computes far-field engine and airframe
noise at an observer grid given various
flight profile and configuration metrics

— Semi-empirical calculations require
detailed engine/aircraft
performance inputs

* e.g., Engine mass flow, areas,
and temperatures, airframe
geometry, eftc.

Aviation Environmental Design
Tool (AEDT)4

Noise Power Distance Curves
GE CF6-50 (Airbus A300)
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« Currentindustry standard model to
evaluate aircraft noise impacts?

* Noise-Power-Distance (NPD) based
computations

— Interpolation from flight test data

« Assumes engine noise dominates
aerodynamic noise

[12] Russel, J., Berton, J. (2012)




7@%@ MIT Validating Flight Profile & Noise Model with
AT Boston Logan Airport Arrival Data

« Noise measurement
campaign conducted from
Nov. 2015 - Jan. 2016 in
collaboration with MIT and
Lincoln Laboratories

— Noise measurements taken at 3
locations on approach to Boston
Logan Runway 22s

— Noise events correlated to
specific flights T :

. Flight tracks and speeds for each b Bop St oudl BY T 8
flight obtained from PDARS® ¥ loo® _;.;,,‘o pé boop o s
« Noise data can be used to e B
check flight profile generator

O n d n O ise m O d e | O C C U rO Cy o 16e 180 Ansp::: had 220 240 260

dB)
[~ 3

"Performance Data Analysis and Reporting System 9



»&- 14 PDARS Data Sample Flight Track Data

B738 Sample Flight Track
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Observer Y Locations (nmi)

8
6 /
4 To Boston Logan
RWY 22s
2
0
-15 -10 -9 0 ) 10 15

Observer X Locations (nmi)

10
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vt BADA 4 Implementation: Computing

ICRT

Thrust from PDARS Data

B738 Flight Profile
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s&n 1 Computing Noise from PDARS Data

LMAX

w
512

10F

-~ D

Observer Y Locati

N

o

-15 -10 -5 0 5 10 15
Observer X Locations (nmi)

Noise Lmax Measured (dB) | Lmax Computed (dB)
Monitor

o NM1 60.7 56.4
Preliminary NM2 61.3 63.2

NM3 No Data Recorded



B MIT Example Application:
T Delayed Deceleration Approaches (DDAS)

Conventional Approach vs. DDA

* In conventional approaches, I
aircraft decelerate ecu’ly N eniry speed o X ?--'-'-9"{2%?555 ............. Sample flap 1
the approach :
- DDASs provide potential for Nogesr ) SRR
fuel burn and noise 5 s
reduction'! 5 ——
Distance to touchdown

* In DDASs, initial flap speed
Veloci_l_y held as |Oﬂg as BDD_FIurSpeH?nHA%IO Fllght I??tiR?Forder ,Asgily5|s (5|m|Iarf?r B757 &:B777.)
: : e

possible during approachto _ ____________

|Ower drgg Ond ThrUST g SO WO SOOI SN NSO S O
requirements 3 - " pistance fo touchdown (nm)
— Lower thrust levels L TA0 -
. . 100-perf:orman-ce--5--- e S 0
reduce engine noise Jprofles N F
_ ngher Velociﬂes Distance to touchdown (nm) § 400 302520151050

Distance to touchdown (nm)

iIncrease airframe noise

From 5 to 95 % of the flights

- From 25 to 75 % of the flights
3 flights with lowest fuel burn
3 flights with highest fuel burn

Power (%N1)

-310 -25
[11] Dumont, J., et al. (2012) Distance to touchdown (nm)
[12] Dumont, J., et al. (2011)
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Conventional vs. Delayed Deceleration
Approach Sample Flight Profile

B737-800 Approach Weight: 146196 Ibs, Engine: CFM56-7B26
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% MIT Conventionalvs. Delayed Deceleration
< IEAT Approach Sample Flight Profile
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~ mT ContinuousDescent vs. Delayed Deceleration
< IEAT Approach Sample Flight Profile

10000 B737-800 Approach Weight: 146196 Ibs, Engine: CFM56-7B26
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& vit  Continuous Descent vs. Delayed Deceleration
< IEAT Approach Sample Flight Profile
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S S Summary and Next Steps

o Summary:
— Noise analysis framework has been developed to capture the
noise impacts of advanced operational procedures performed
by both current and future aircraft

— This framework has demonstrated the capability of analyzing
single-event user specified approach procedures
« Currently being validated against BOS Noise Data

« Next Steps:
— Generate thrust profiles for all flights in Boston Noise
Measurement Campaign for evaluation in ANOPP and AEDT
« Compare noise computations with measured data to
improve modeling fidelity

— Evaluate impact of various delayed deceleration approach
procedures for various aircraft combinations on cumulative

airport noise

18
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